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The Convergence of Galerkin Approximation Schemes 
for Second-Order Hyperbolic Equations 

With Dissipation 

By Barbara Kok and Tunc Geveci 

Abstract. In this paper we consider certain semidiscrete and fully discrete Galerkin approxi- 
mations to the solution of an initial-boundary value problem for a second-order hyperbolic 
equation with a dissipative term. Estimates are obtained in the energy and negative norms 
associated with the problem, yielding in particular Hl- and L2-error estimates. The approxi- 
mation to the initial data is taken, in this case, as the projection with respect to the energy 
inner product, onto the approximating space. We also obtain estimates for higher-order time 
derivatives. 

1. Introduction. We consider the approximation of the solution of the initial- 
boundary value problem 

(D2u(t, x) + Lu(t, x) + aD,u(t, x) = 0, (t, x) E(0, T] x Q, 
(1.1) 4 u(t, x) = 0, (t, X) E(0, T] x au, 

1u(0, x) = uo(x), Dtu(0, x) = u0(x), x E 2. 

The domain Q c RN is bounded with smooth boundary a32. L is the second-order 
elliptic operator 

N (a. ( au LU=- L axi ai, (x) ax ) + ao (x)U, 

where 

ai,= a1i e C?(Q) and Ea,j(X)U, >' C| Vx E?,V ER f R i>O. 
i , j 

We associate the bilinear form 

a(u, v)=(a au av + auv)dx 

with L. The term aDtu(t, x), a > 0, represents a retarding or frictional force which 
causes dissipation of energy. 

Our aim is to extend the convergence analysis for conservative hyperbolic equa- 
tions by Geveci [5] and Baker and Bramble [1] to include a dissipative term of the 
above form. 
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The problem (1.1) and its approximation is considered in the framework of certain 
subspaces HS(Sl) of the Sobolev spaces Hs(Q), as in [1], [2], [5] and [7]: 

fs()= {v E Hs(Sl): LJv =Oon a2 forj < s/2}, s > O. 

H??,(S1) =n Hs (S). 
s>O 

The eigenvalues of the operator L with homogeneous Dirichlet boundary conditions 
form a sequence { AX }XI1 of real, positive, nondecreasing numbers with correspond- 
ing orthonormal eigenfunctions { p}52j. complete in L2(Q2). Hs(S2) can then be 
defined equivalently as [4] 

( {I~~~1 2~0 1/2 

Hs(2) = /< E L2(2): I = (vL p(Vpm) ) <M 'j 

For s > 0, H-s(S) denotes the dual of Hs(S2) with respect to the L2-inner product, 
with norm 

= 
0 (,p)2s}1/2 

llvll -s= (, RV I(Pj)J Js 

The solution operator T: H-1(2) -* H1(S2) of the associated elliptic boundary 
value problem is defined by 

a(Tf, qp) = (f, qp) Vp Eft1(Q), 

and is selfadjoint and positive definite on L2(Q) so that 

(v, W) s (Tsv, w) 

defines an inner product on L2(Q2) (Thomee [7]). 
In the formulation and presentation of the convergence analysis, we shall mainly 

follow Geveci [5]. Let X denote the space X -H1(2) X L2(Q) with the 'energy' 
inner product 

((U, V))0 = a(u, v) + (iu, v). 

For U E H9?l(S2) X H9(S1), we have the norm IIIUIII1 = IIuI21 + 2 The initial- 
boundary value problem can now be written as an evolution equation for U(t)= 

[u(t), iu(t)]T C X: 

(1.2) DtU(t) + AaU(t) = 0, U() = UO = [uo, u]T, 

where 

Aa [L PI A] 
a 

]O I] 

where 

A = -I] 
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as in [5], (1.5). We note that 

q12 L q12 
[ O L9 ]q even, 

Aq -= 

q + 1)/2[ ?1)/2 L ], q odd, 

and 

(1.3) IIIUIlIq = IlAqUIllo ([5, (1.8)]). 
Dissipation of energy in the system (1.1) is demonstrated by the inequality 

(1.4) IIIU(t)IIIo < IIIU(s)IIIo, t > s > 0, 

which is deduced from (1.2) as follows: 

dt IIIU(t) III = ((DtU(t), U(t)))o + ((U(t), DpU(t)))o 

= ((-AaU(t), U(t)))o + ((U(t ), -AaU(t)))o 

= a(ii, u) - a(u, iu) - 2a(it, iu) + a(u, u) - a(u, u) 
= -2a(ii,ii )0. 

Therefore, 

0lUtll 0 lUs)io t > s > O. 

Furthermore, for U(t) e H4+ 1(Q2) x Hfq(Q), we have the regularity result: 

(1.5) IIIU(t)IIIq < IIIU(S)lIII, t > s > O. 

In fact, 

d 
IIIU(t) IIIq2 = 

d 
qjAU(t) III dt t)q =dt 111A t) 

= ((Aq( -A - af )U, AqU))o +((AqU, Aq(-A - a-0 )o 

=(( - Aq+ lU, AqU))o + ((AqU, -Aq+ lu))o 

-a((AqYfU, AqU))o - a((AqU, Aq,fU))0 

= -a((A[O, ii], Aq[u, u]))o - a((Aq[u, u], A [O, U]))o 

=C(_1)q (A2q[0, iu], [u_])oC -)q 4 2q[u, u,], [O, i]) 

= -a(([O, L i ], [u, ii])0 - a(([LqU, Lqi], [0, U])o 

= -2a(Lqi, iu) = -2aIll I2< O. 

The semidiscrete Galerkin approximation to (1.1) is derived from the formulation 

(D2u(t), (p) + a(u(t), (p) + a(Dtu(t), (p) = 0 Vq1 
- it1('2), u(t) - 

a(TD72u(t), p) + a(u(t), (p) + aa(TDtu(t), p) = 0. 

Then, with u(t) = Dtu(t), we have 

TDtii(t) + u(t) + aTii(t) = O, 
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and parallel to the treatment in [1] and [5], an evolution equation for U(t)= 

[u(t), i(t): 

(1.6) JD,U(t) + U(t) + aJtU(t) = 0, U(O) = U0, 

where 

[-I O ]' [O O] 
We note that 

J: L2(S2) x H-1(Q) t H1(Q) x L2( 2) and 

9-: R(Q) X L 2(Q) H1*t(o) X L 2 
(U) 

As in [5], we have 

(1 .7) IIIJPU(0) Ill = 1100t)1ll _P, p > 1 

and we note that J is skew-adjoint on X. 
Semidiscrete Galerkin Scheme: Let Sj'(i) C H1(2) be a finite-dimensional sub- 

space with the approximation property 

inf { |u - 
hllO + hu - 

Phlll} < chllullq, 1 < q < r, r > 2, 
'Ph E Sh,(Q) 

in which h - (0, 1) is a parameter. 
Let Th: H - 1(2) *Sjr() be an operator approximating T and be defined by 

a(Thf, (Ph) = (I (Ph) V(Ph C Sh(),f E H-(Q) 

The operator Th has the properties (see [1] and [3]): 

(1.8) Th is symmetric, positive semidefinite on L2(Q2) and positive 

definite on Sr 

and 

(1.9) |(T - Th)f||P < ChP?9?2|fhq, -1 _ p < r - 2,-1 q r-2. 

The semidiscrete approximation to the solution u(t) of (1.1) is a function 
uh(t) E S r(Q) which satisfies 

(Dt Uh(), (Ph) + a(uh(t) (Ph) + a(Duh(t), (Ph) = 0, 'Ph hS(2), t > 0, 

Uh(0) = Uo h C Sh(), Uh(0) =DtUh(0) = "O,h C Sh(Q). 

We write this, in terms of Uh(t) = [uh(t), ih(t)]T, as 

(1.10) ~ JJhDtUh(t) + Uh(t) + aJ?1_Uh(t) =0, t>0 
(1 .10) ( Uh(?) - Uo h > 

where 

Jh [ :h L2(Q) X H-1(Q) hr Q X L2Q 
is[0 I i X 

is skew-adj'oint in Sr~(Qi) X L 2(Q) (see [5]), and where 
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If we define 

III|VII-p,h = {llVl1-(p-1)h + IIVII_ hip P p >, 

this being the seminorm induced by the bilinear form 

((V, W))-p h (Thp V W) + (Thp, W) 

we see that 

(1-11) IIIJhgUhIIO = IIIUhIII-p,h, p > 1, for Uh E Sr(Q) x L2(Q) [5]. 
Energy estimates are readily obtained from (1.10), parallel to the derivations of (1.4) 
and (1.5), in this case using the skew-adjointness of Jh and 

Jh (_1)p h ] 

(see [5]). Thus we have 

(1.12) IIIUh(t)III-p,h < IIIUh(0) Ill-p,h, p > 0, t > 0. 

We choose UO,h 
= [Phu0 ph U]- P,U0, where Ph: Ht'(Q) x L2(u) h Sh X Sh 

denotes the projection with respect to ((, ))O, i.e., 

(1.13) (P2v, (Ph) = (VI Th)9 Th E Shr(Q), v e L2(2), and 

a(Plv, Th) = a(v, (h) (h E Sr(Q), V e ftl(2). 

This is in accordance with the choice of initial data in [5]. 
Approximation-Theoretic Results: The following approximation-theoretic results 

are well known ([5] and [7]) and will be used repeatedly: 

(1.14) liv 
-phlv I chp?"I I_q, 

-1 < p < r - 2, 1 < q < r, 

(1.15) liv - Phvll _p < chp+qli Vlq 0 < p < r, 0 < q < r, 

and hence, 

(1.16) IIIV - PhVIII-p < chp+q-101Vllq1 < p < r - 1, 1 < q < r. 

We also have, from (1.9), 

(1.17) III(J-Jh)VIIP +q lq-2 0 < p < r - 1, 1 < q < r 

and 

(1.18) IIIVIII|-p,h < C { CIIIVIII_p + hPIIIVIIIo }, V e HR'() x L2(Q), 

IIIVIIL-p < C{IIIVIIIKp,h + hPIliVIlo}, 0 < p < r - 1. 

We now present the convergence analysis for the approximation of second-order 
hyperbolic equations with dissipation, following the ideas of Baker and Bramble [1], 
Geveci [5] and Thomee [7]. 

In Section 2 we obtain estimates in the energy and negative norms when the 
approximation to the initial data is the projection onto the approximating space 

Shr(S) X Sh(Q), as defined by (1.13). 
In Section 3 we discuss fully discrete approximations generated by a class of 

'acceptable' rational functions, as defined by Hersh and Kato [6]. 
In Section 4 we give estimates for the convergence of higher-order time derivatives 

in the semidiscrete case, that is, for IIIDsU(t) - DsUh(t)II|Lp, 0 < p < r - 1. 
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2. Convergence Estimates for Semidiscrete Approximations. The complete proofs 
of the results stated below appear in the supplements section at the end of this issue. 
The analysis therein follows that of Geveci [5, Section 2]. 

PROPOSITION 1. If U(t) satisfies (1.6) and Uh(t) satisfies (1.10) with Uh(O) = PhUo, 

U0 C Hfq1(Q) x H9(Q), then 

11IU(t) - Uh(t)IIIo < c(t*, a)hq- l1JJU0J1q, 1 < q < r, 0 < t < t*. 

PROPOSITION 2. If U(t) satisfies (1.6) and Uh(t) satisfies (1.10) with Uh(O) = PhUo 
and UO - ftq+1(g) x H9(Q), then 

111U(t) - Uh(t)lll-p,h < c(t*, a)hPq9 IUlllq, 1 < p < r - 1, 1 < q < r. 

Propositions 1 and 2 then yield our main result. 

THEOREM 1. If U(t) is the solution of (1.6) and Uh(t) is the solution of (1.10) with 

Uh(O) = 
PhU0, U0 e H X?l(2) X H2(), 1 < q < r, then for 0 < t < t 

IIIU(t) - Uh(t)IIK_p < c(t*, a)hP+q-?lIUolllq, 0 < p < r -1. 

3. Convergence Estimates for Certain Fully Discrete Schemes. Let Ih denote the 
identity map on S'(2). The operator Th: H-1(Ql) -- Sj(Q2) is positive definite on 

S,(i), so that we can define Lh = (ThlIs,())-. Then as in [5, Section 3], we have 

A * h|Sr ( s) x Sr ( a)) Ah [Lh 0Ih JhIsxh h ) 

We can rewrite (1.10) as 

(3.1) DtUh(t) + AhUh(t) + afhUh(t) = 0, Uh(0) = PhUO 

where 

fh-[0 0] 
h Ih 

Therefore, 

(3.2) Uh(t) = e (A=?aJ*)tPhUo eA ,htPhUo. 

We now construct single-step fully discrete approximations to (1.2). Let r be a 
rational function such that [6]: 

(3.3) r(z) = ez + O(lzl +1), z -O 0, and 

Jr(z)I < 1 for all z with Re z < 0. 

The fully discrete approximation { Wn }? 1 C Shr(2) X Shr(Q) to U(t) is given by 

Wn1 = r[-kA,ah]Wn, W0 = PhUO; 

i.e., 

(3.4) w = rn[-kAa,h]PhU0, 

where k is the time step. 
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The following lemmas will be applied in the derivation of the error estimate for 
U(t) - Wn, t = nk: 

We first note that - Aah is a dissipative operator, since for all U E Sh'(9) x Sh'(0) 
we have 

((U, -Aa,hU))o = ((lu, u], [i, -Lhu - ai]))0 

= -a(is, u) + a(u, iu) - (Lhu, i) = -a(i, iu) + a(u, us) - a(ThLhu, i). 

Since Lh = (ThIsV)-1 this reduced to -a(s, i) + 2i Im a(u, is). Therefore 
Re((U, - Aa hU))O < 0. The operator - Aa h therefore generates a strongly continu- 
ous contraction semigroup. 

LEMMA 1. Let r be a rationalfunction satisfying (3.3). Then 

Ir n(-kA Sh)I!L(S^S) < 1, where S' = Sh(2) x Sh(g). 

Proof. This follows directly from Hersh and Kato [6, Theorem 6]. 

LEMMA 2. For allf e D- A',+') we have 

III n( - kAa h)f - e-nkAahf111p,h < c(t*)kvjIjAJ2 f111ph, p > 0. 

Proof. See Hersh and Kato [6, Theorem 7]. 

LEMMA 3. For 2 < m < v + 2, Z E X, we have 

|||Am h Jh Zlll-p,h < c(a)IIkJhZIL-p,h, p > 0. 

Proof. By definition 

Am, 
h= (Ah + alh) . 

We note that Ahfh + ,hAh = Ah; A2jf = h/I j > 1 and ,h =-.h V m > 1. 
Then 

rn-2 

(Ah + af,h) = Cm jaiAm-'- + am`fh + dm, aml 
1 

2hAh 
j=l 

where 

( m-3)/2 for m odd, 

tL\(m- 2)/2 form even, 

Cm 0 = Cmm-3 = Cmm-2 = 1; 

while for 0 < j < m-3, cm,j iS determined by the triangle 

m=2 1 
m= 3 11 

*1 21 1 
*1211 
*12311 
*133411 

and dm,j = Cm,m-2-2j, j = 1, ... ,/U. 

On Shr(j) x Sh(2), we have 

m-2j 
A -Jri = S' Ji + aml.,fhJm-1 + Y, dm,a 2 f jm-2j1 a, h Jh = Cm,]'tih n h. J + m jh h 

j=O j=l 
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and for Z E X, 
n -2 

IIIAdxhlJhml(JhZ)I11-p,h C,,1 ajIll Jh%( JhZ) 111-p,h + mlIIIh1Jhm (JhZ)I11-p,h 

j=0 

+ L dm1j2a j IIhJhl2j (Jh Z) I I I-p,h . 

For anyj > 0 

IIIJh(JhZ)III-p,h IIIJh (JhZ)III-j,h < CIIIJh,(JhZ)1110 = CIIIJhZIIL-p,h; 

while 
n -2 

m Cla C(a). 
J=0 

Noting that IIIfhWIII p,h < III Wll-ph, p > 0, we have, as above, 

a mII 
IllfhJh 

h 
( JhZ)III-p,h < c(a)lllJhP (JhZ)IIIo = c(a) IIIJhZIIK-p,h; 

and, similarly, 

,d a m-1-2j l>Jm- 2jZ|| p, c C(Ol) IIIJhZIII-p,h- 

The result follows. 
As in [1] and [5], we define an auxiliary function Ugk)- [u(k) j4k)]T with 

UO(k) E: H??(Q) x H??(Q) and 

(3.5) Ilo )IIIq+m < k lUlq 

(3.6) IlIUo- Ug" )II_p < k ?PIIIU0IIIq, m, p, q > 0. 

THEOREM 2. Assume U0 E (Hq+l(2) x fHq(Q)) n (Hs+l(Q) x Jts(Q)). Then, for 
2 < q < r, 2 < s < V + 1, nk = t < t*, 

IIIWVn - U(nk)IIIo < c(t*, a){ h q-lIlUollIq + ks-lIIUoIII1s}. 

Proof. We first note that 

IIIWn - U(nk)IIIo < IIIW n - Uh(nk)IIIo + IIIUh(nk) - U(nk)IIIo. 

From Proposition 1, we have 

(3.7) IIIUh(nk) - U(nk)IIIo < c(t*, a)hlq- IIU0111q, 

so that it remains for us to estimate 

W - Uh(nk) = rn(-kA,,h)PhUO - e nk AhPhUo 

r ( -kA,,h) - e-nk A } PUgk) 

+ {rn(-kAah) - enkA.hl}Ph(Uo - UOk)). 

We estimate the second term: 

III{rP1(-kAa,h) - enkA.hl}Ph(Uo - U(k))IIIo 

(3.8) < ||rP1( kAa< h)||L(S^,S^)IIIPh(UO -o )lUlI + IllPh(Uo - uk))IIIo 

< 2IIIPh(Uo - uJk))IIIo < 2k IIIUoIIIs-1, 
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by Lemma 1 and (3.6). Let F,(z) = r'(z) - e"z. We now have to estimate 

111h (- k~~)phUJk)IIIo0. 11I Fn (-kA & h )PU(Il 

As in [1] and [5], we write 

U(k) jJ -(j 
-Jh)1A UO() + Js+lAs+1U(k) 

1=0 

so that 

PhU0( - = Ph(.J - Jh)AU ) + PhJh(J - Jh)A2uk) + , J/(J - Jh) AUO 
1=2 

+ J4s+ lAs + lu( k) 

However, Ph(J - Jh)Z = 0, Z E X, and thus 

I|IFI(-kA h ) IIIFn(kA a,h)PhJh(J Jh)AUO 1110 
+ II ( - kAa h) J 1As+1 U(k)IIIl 

+ I IIFn(-kAah h )J(J - U 1110 
1=2 

By Lemma 1, (1.18), (1.17) and (3.5) the first term can be estimated as follows: 

1IIIFn(-kAa,h)PhJh(J - Jh)A UO 110 
(3.9) < 21IIJh(J - Jh)A Uc 110 I A lllq2 

= c lllq < ch"IIIUolllq. 

For 2 < / < s, we have by Lemmas 2 and 3, (1.18), (1.17) and (3.5), 

IIIFn(-kAah )Jh(hJ - Jh)A UA 1110 
< c(t*)k IIIAIh Jhl(J - U0 1110 

(3.10) < c(t*, a)k'12IIJh(J - Jh)A U0 1110 
< c(t*, a)k h = (t, )hUlIIIIIIq+l-2 

< c(t*, a) k-2h q-'k -(/-2)lU111 Ull = C(t*, a)h q- 
llIlUolq 

Finally, by Lemma 2 (2 < s < V + 1) and Lemma 3, it follows that 

III Fn( k A ) h + < C(t*)kslIIIASa,hJh AU? 

< C(al, t)k IIJA UO Il 
We now apply result (3.35) of [5], namely 

IIIJhA U0(k)I110 
s 

c(iiiu0iii1q +) 

to obtain 

(3.11) 1IIFn(-kAa,h)Jh?lAS?lUo(k)IIO c(a, t*){ ks1111U01115 + h-llIU0lIlq} 

Combining (3.7)-(3.11) yields the result of the theorem. El 
We also establish negative norm estimates. 

THEOREM 3. For 2 < q < r, 2 < s < v + 1, 1 < p < r - 1, nk = t < t*, we have 

(3.12) IIIVW - Uh(nk)III-p,h < c(t*, a){ hP+q-?lIIIUolIq + ks-1IU01IIS-I1 }, 
(3.13) IIIW - Uh(nk) IIIp 

< c(t*, a) { h P+q- lIllUollIq + (ks-1 + ks-2h P) IIUIII-i }s 



388 BARBARA KOK AND TUNC GEVECI 

(3.14) 11W''n -Uh(nk)III-p < c(t*, a){ hP+q-lIllUollIq + ks-1U0111) }. 

Proof. The estimates (3.13) and (3.14) follow from (3.12), by using the energy 
estimate of Theorem 2. In fact, 

IIIW n - Uh(nk)IIIP < c{lllWn - Uh(nk)II1-p,h + hPIIIW n 
-Uh(nk)IIIo} 

< C(t*, a){ hp+q- |llUOlllq + ks-IIIUOIIIS-l) } 

+ c(t*,a)hP{ h-lIllUollIq + k -2IIIU0III51 } 

< C(t*, a){ hp+q-lIllUolilq + (ks-1 + ks-2hP)IIIUoIIIS-1 }; 

and 

IIIWJn - Uh(nk)III-p < c(t*, a){ hP+q-lIllUollIq + (ks-1 + ks-1hP)IIIUoIIIs} 

< c(t*, a){ hp+q-lllUollIq + ks-IIIU0IIsI }. 

We proceed to prove (3.12). As in the proof of Theorem 2, we write 

(3.15) W' - Uh(nk) = FI(-kA h)PhUO + Fn( -kAah)Ph(UO- Uk) 

and note that 

(3.16) IIFn(-kAa,h)Ph(U0 - UO())IIIp,h < 2IIIPh(Uo - U _k))IIIo ' cksIIIUIIi 

by (3.6). Estimating the first term of (3.15) is done as in Theorem 2 by 

IIInF( kAah)PhUO( )II-p,h < IIIFn(-kAa,h)PhJh(J - Jh)A U0 I|-p,h 
S 

+ E |I|Fn(-kAa,h) J(J - Jh) A U(II-p,h 
1=2 

+1IIFn(-kAa,h) Jh A ugk)ll-p,h- 

Now, by (1.17) and (3.5) and noting that JhPh Jh = Jh2, 

IIIFn(-kAa,h)PhJh(J - Jh) AU0 ll_p,h 

(3.17) < 2IlPhJh (J - Jh ) AU _ph = 21IIJh, (JhPhJh)(J Jh)AUO 1110 

- 2111(J - Jh)A U0 III-(p+l),h < ch 

For 1= 2,.. .,s, we have 

1IIFn(-kAa,h)Jhl(J - Jh)A U 0 _Lp,h 

< c(t*)k2IIIA /hhJh (J - Jh) A U0 ll-p,h 

3 c (t*, a)k'2IIJh(J - Jh) A U0 lL-p,h (3.18) = c(t*, a)k. 2_ - . ,U,II. (P , 1),h 
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Finally, 

IF( kAh)J?lAs?lUk)II ,h < c(t*)ksIIlllAa,hJh/AS OIIp. 

< c(t*, a)ks- + 
-p,h = c (t*, a)ks O0 

This is precisely (3.44) of [5], and applying the result (3.47) of the analysis there, we 
obtain 

IIIF,1(-kA h J A 
+1 

k)jjj-p,h < c(t*, a)t kslIIIUoIIIs- + hP?q I11U0I11q}- 

The theorem is established by (3.16)-(3.19). O 

4. Estimates for Higher-Order Time Derivatives of Semidiscrete Approximations. 
To obtain energy and negative norm estimates for DsU(t) - DsUh(t), the following 
formulations of our evolution equations are used: U(t) satisfies ((1.2)) 

D,U(t) + AaU(t) = 0, U(0) = U0, 

where Aa = A + af. We can rewrite (1.6) as follows: 

(4.1) (J + aJ'*)DtU(t) + U(t) = 0, U(o) = U0, 

where 

,*, T 0 

Let Ja J + aY*. We note that JaAa = I. 
The semidiscrete approximation Uh(t) satisfies ((3.1)) 

DtUh(t) + AahUh(t) = 0, Uh(0) = UOGh 

where A ah =Ah + afh. One can also rewrite (1.10) as 

(4.2) (Jh + agKh )DtUh(t) + Uh(t) = 0, Uh(0) = Uo h' 

where 

tS*[_ Th 0] 

Let =ah- Jh + a?lh* and note that hA a,h =I on Sh1(2) x Sh(Q). The following 
result will be needed: 

(4.3) IIIA"Zlllp < c(a)JIlZ4ilm+p, m >' l,p >' 0. 

In fact, as in Lemma 3, 

A'= cm, IaJAm-J + a?fn + E d an12IfA2I, 
/=0 

where 

(m- 1)/2 formodd, 

|(m m-2)/2 for m even, 
and the coefficients Cm and dm j are as defined in Lemma 3. For Z E ftP + +() 

x HP +"(Q), we have 

rn-i~~~~~~~~~tn2A A Am'Z = a cmaJAnP+J-JZ + a"1Av fZ + E d,11an -2IApA21Z, 

j=1 
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so that 

Ill AmZlllp _I|||AvAmZlllo 

< Cm jaJIIIAm+P-JZIIIo + amjjIAI,IA ZIIo + E din am2JIIIA PA2jZIII0 
j=0 j=l 

< E cm,i'j I IIAm"+ZII1o + amIll-ZIIIp + E dmjam-2jjjjIA2jZIIIj 
,=o J=1 

< C(a){ IIIZIIIm+p + IIIZIlp + IIIZ1I1p+{f1?}}) < c(a)IIIZIIIm+p. 

Analogous to [2] and [5], we shall choose Uh(O) = J`j 1Asd 1Uo, s > 1. Our main 
result is 

THEOREM 4. Assume UO E s+q+l, 1, < q < r. Then 

1IIDtsU(t) - DtsUh(t)III-p < c(t*, a)hP+q- lIJ0111s+q, 0 < p < r - 1. 

The proof can be found in the supplements section at the end of this issue. 
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